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ABSTRACT
A growing number of commercial and enterprise systems in-
creasingly rely on compute-intensive Machine Learning (ML)
algorithms. While the demand for these compute-intensive ap-
plications is growing, the performance benefits from general-
purpose platforms are diminishing. Field Programmable Gate
Arrays (FPGAs) provide a promising path forward to accom-
modate the needs of machine learning algorithms and represent
an intermediate point between the efficiency of ASICs and the
programmability of general-purpose processors. However, ac-
celeration with FPGAs still requires long development cycles
and extensive expertise in hardware design. To tackle this chal-
lenge, instead of designing an accelerator for a machine learning
algorithm, we present TABLA, a framework that generates ac-
celerators for a class of machine learning algorithms. The key
is to identify the commonalities across a wide range of machine
learning algorithms and utilize this commonality to provide a
high-level abstraction for programmers. TABLA leverages the
insight that many learning algorithms can be expressed as a
stochastic optimization problem. Therefore, learning becomes
solving an optimization problem using stochastic gradient de-
scent that minimizes an objective function over the training data.
The gradient descent solver is fixed while the objective function
changes for different learning algorithms. TABLA provides a
template-based framework to accelerate this class of learning
algorithms. Therefore, a developer can specify the learning task
by only expressing the gradient of the objective function using
our high-level language. TABLA then automatically generates
the synthesizable implementation of the accelerator for FPGA
realization using a set of hand-optimized templates.

We use TABLA to generate accelerators for ten different learn-
ing tasks targeted at a Xilinx Zynq FPGA platform. We rigor-
ously compare the benefits of FPGA acceleration to multi-core
CPUs (ARM Cortex A15 and Xeon E3) and many-core GPUs
(Tegra K1, GTX 650 Ti, and Tesla K40) using real hardware
measurements. TABLA-generated accelerators provide 19.4×
and 2.9× average speedup over the ARM and Xeon proces-
sors, respectively. These accelerators provide 17.57×, 20.2×,
and 33.4× higher Performance-per-Watt in comparison to Tegra,
GTX 650 Ti and Tesla, respectively. These benefits are achieved
while the programmers write less than 50 lines of code.

1 Introduction
A wide range of commercial and enterprise applications such as
health monitoring, social networking, e-commerce, and financial
analysis, rely on Machine Learning (ML) to accomplish their
objectives. In fact, the advances in machine learning are changing

the landscape of computing towards a more personalized and
targeted experience for users. For instance, services that provide
personalized health-care and targeted advertisements are either
prevalent or on the horizon. Nevertheless, machine learning al-
gorithms are computationally intensive workloads. Specifically,
learning a model from data requires substantial amount of com-
putation that is repeated over the training data for a relatively
large number of iterations. While the demand for these compu-
tationally intensive techniques is increasing, the benefits from
general-purpose solutions is diminishing [1–3]. With the effective
end of Dennard scaling [4], traditional CMOS scaling no longer
provides performance and efficiency gains commensurate with
increases in transistor density [1–3]. The current paradigm of
general-purpose processor design falls significantly short of the
traditional cadence of performance improvements [5]. These chal-
lenges have coincided with the explosion of data where the rate of
data generation has reached an overwhelming level that is beyond
the capabilities of current computing systems [6] to match.

As a result, both the industry and the research community
are focusing on programmable accelerators, which can provide
large gains in efficiency and performance by restricting the work-
loads they support [3, 7–11]. Using FPGAs as programmable
accelerators has the potential for significant performance and
efficiency gains while retaining some of the flexibility of general-
purpose processors [12]. Commercial platforms incorporating
general purpose cores with programmable logic are beginning
to appear [13, 14]. For instance, Microsoft employs FPGAs
to accelerate their Bing search service [7]. FPGA’s increasing
availability and flexibility makes them an attractive platform to
accelerate ML algorithms. However, a major challenge in using
FPGAs is their programmability. Development with FPGAs still
requires extensive expertise in hardware design and implemen-
tation and the overall design cycle is long even for experts [7].
This paper aims to tackle this challenge for an important class of
ML algorithms by presenting the TABLA1 framework. TABLA
is template-based solution–from programming model to circuits–
that uses FPGAs to accelerate statistical machine learning. The
objective of our solution is to devise the necessary programming
abstractions and an automated framework that is uniform across
a range of machine learning algorithms. TABLA aims to avoid
exposing software developers to the details of hardware design
by leveraging commonalities in ML algorithms.

While developing TABLA, we leveraged the insight that many
learning algorithms can be expressed as stochastic optimization
problems [15]. Examples of such learning algorithms are sup-
port vector machines, logistic regression, least square models,
1Template-based Accelerator Builder for Learning Algorithms.
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Figure 1: Overview of TABLA’s workflow. The programmer only provides the gradient of the objective function, representing the learning algorithm,
in TABLA’s high-level programming language. The other major components of TABLA are: (a) the design builder that automatically generates
the synthesizable Verilog implementation of the accelerator from a set of pre-designed templates; and (b) the model compiler that generates the
execution schedule for the accelerator, the memory layout, and the memory access schedule.

backpropagation, conditional random fields, recommender sys-
tems, Kalman filters, linear and nonlinear regression models,
and softmax functions. These types of learning algorithms can
be optimized using stochastic gradient descent[16]. That is, the
learning task becomes solving an optimization using stochastic
gradient descent that iterates over the training data and minimizes
an objective function. Although the objective function varies
for different learning algorithms, the stochastic gradient descent
solver is fixed. Therefore, the accelerator for these learning tasks
can be implemented as a template design, uniform across a class
of machine learning algorithms. This template design comprises
the general framework for stochastic gradient descent.

TABLA automatically specializes the template design for a
specific learning task by generating and integrating the hard-
ware blocks that implement the gradient of the objective function.
Therefore, a developer can specify the learning task by only
writing the gradient of the objective function using our high-
level language. The gradient function can be implemented with
less than 50 lines of code for logistic regression, support vector
machines, recommender systems, backpropagation, and linear
regression. TABLA automatically generates a concrete accelerator
(synthesizable Verilog code) for the specific learning algorithm
using a set of hand-optimized template designs while considering
high-level design parameters of the target FPGA. To this end, our
work makes the following contributions:
(1) We observe that many common machine learning algorithms
can be represented as stochastic optimization problems. This
observation enables TABLA to provide a high-level, intuitive,
uniform, and automated abstraction to use FPGAs to accelerate
an important class of machine learning algorithms.

(2) Using this observation, we develop a comprehensive solution–
from programming model to circuits–that abstracts away the
details of hardware design from the programmer, yet generates
accelerators for a range of machine learning algorithms.

(3) We use TABLA to generate accelerators for five different
learning algorithms–logistic regression, SVM, recommender
systems, backpropagation and linear regression–each with two
different topologies. We use TABLA to generate ten different
accelerators for these ten different learning tasks and evaluate
them on the Xilinx Zynq FPGA platform.

We rigorously compare the benefits of the FPGA implemen-
tation to both multicore CPUs (ARM Cortex A15 and Xeon E3)
and many-core GPUs (Tegra K1, GTX 650 Ti, and Tesla K40),
using real hardware measurements. TABLA generated acceler-
ators provide 19.4× and 2.9× average speedup over the ARM
and Xeon processors, respectively. These accelerators provide
17.57×, 20.2×, and 33.4× higher Performance-per-Watt in com-
parison Tegra, GTX 650, and Tesla, respectively. These results

suggest that TABLA takes an effective step toward widespread
use of FPGAs as an accelerator of choice for machine learning
algorithms.

2 Overview
Machine learning generally involves two phases: the learning
phase and the prediction phase. The learning phase, which is pre-
cursory to the prediction phase, generates a model that maps one
or more inputs (independent variables) onto one or more outputs
(dependent variables). The generated model is used in the pre-
diction phase to predict the dependent variables for new unseen
inputs. The learning phase is more compute intensive and can
benefit significantly from acceleration. Therefore, TABLA aims
to provide a comprehensive solution from programming model
down to circuits that can automatically generate accelerators for
the learning phase of a class of ML algorithms as illustrated by
Figure 1. We briefly discuss each component of TABLA below.
1 High-level programming model. TABLA provides a high-

level programming model that enables programmers to specify
the gradient of the objective function which defines the learning
algorithm. This mathematical function captures the learning algo-
rithm. TABLA focuses on a class of learning algorithms that can
be solved using stochastic gradient descent. The stochastic gra-
dient descent solver is uniform across a range of ML algorithms
and therefore, the gradient function is sufficient to generate the
entire accelerator design. The programmer also provides the
initial and meta-parameters of the learning algorithm.
2 Design builder. After the programmer provides the gradient

of the objective function, TABLA’s design builder automatically
generates the accelerator and its interfacing logic to the external
memory. The design builder uses a set of pre-designed templates
to generate the accelerator. The output of the design builder is
a set of synthesizable Verilog designs that concretely implements
the accelerator. The inputs to the design builder are (1) the gra-
dient function, (2) a high-level specification of the target FPGA,
and (3) a set of pre-designed accelerator templates in Verilog.
The FPGA specification constitutes the number of DSP slices,
the number of SRAM structures (Block RAMs), the capacity of
each Block RAM, the number of Block RAM read/write ports,
and the off-chip communication bandwidth.
3 Pre-designed templates. The design builder generates the

accelerator design from a set of pre-designed templates. These
templates are generic and uniform across a large class of statis-
tical machine learning algorithms and support all the language
constructs defined in TABLA’s programming interface. The tem-
plates provide a general structure for the accelerator without
making it specific to a certain algorithm or FPGA specification.
The templates also contain the implementation for stochastic
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Figure 2: TABLA leverages stochastic gradient descent as an abstrac-
tion between hardware and software to create a unified framework to
accelerate a class of machine learning algorithms. The highlighted
blocks are the focus of this work.

gradient descent, which is uniform across all the target machine
learning algorithms. These predefined templates are designed by
expert hardware designers and comprise both the accelerator and
the interfacing logic that connects the accelerator to the rest of
the system (e.g., memory).
4 Model compiler. Another component of TABLA is the model

compiler that statically generates an execution schedule for the
accelerator and significantly simplifies the hardware. The inputs
to the model compiler are (1) the structure of the accelerator and
(2) the specification of the gradient function. The model compiler
converts the gradient function to a dataflow graph and augments
it with the dataflow graph of stochastic gradient descent. Then,
it uses a Minimum Latency Resource-Constrained Scheduling
algorithm [17] to generate the accelerator schedule. The model
compiler also generates an order for the model parameters that
will be learned. This order determines the layout of parameters
in the memory and streamlines the interfacing logic that commu-
nicates with the memory. Finally, the model compiler generates
the schedule for the memory interface.

As Figure 2 illustrates, TABLA uses stochastic gradient descent
as the abstraction between hardware and software. This abstrac-
tion is basis for the templates from which TABLA generates the
accelerator. As shown in Figure 2, TABLA can potentially target
different platforms, including Xeon Phi, GPUs, FPGAs, CGRAs
and ASICs. Specific backends need to be developed to support
each of these platforms. In this paper, we focus on FPGAs since
they represent a middle-ground between the efficiency of ASICs
and programmability of CPUs. Before discussing the compo-
nents of TABLA for FPGA platforms, the next section describes
the theoretical foundation of stochastic gradient descent.

3 Background on Stochastic Gradient Descent
Stochastic gradient descent is an iterative optimization algorithm
that finds a set of parameters which minimize an objective func-
tion. This section provides an in-depth detail of stochastic gra-
dient descent and shows why we chose it as the mathematical
foundation to implement TABLA.
Learning as an optimization problem. Each machine learning

algorithm in our target class is distinguished by its objective
function. The objective function has a set of parameters that are
learned in accordance with the training data such that the learned
model can make data-driven predictions or decisions on new un-
seen data. During each iteration, the objective function quantifies
the error between the current model’s output (prediction) and the
expected output given in the training data. Thus, a machine learn-
ing algorithm learns a model by solving an optimization problem
that minimizes the prediction error over the entire training data
as shown in Equation (1).

min
W (t)εR

∑
i

f (W (t), Xi) (1)

In Equation (1), Xi is the ith input, W (t) is the model parameter at
iteration t and f (W (t)

i ,Xi) is the prediction error. The sum of the
prediction errors across all training input vectors is the objective
function that needs to be minimized. To learn a model W , opti-
mization algorithms iterate over the training data and gradually re-
duce the prediction error by changing the model parameters. Gra-
dient descent is one such common optimization algorithm. While
the gradient descent algorithm is fixed across different machine
learning algorithms, the objective function varies. Table 1 shows
five sample machine learning algorithms and their corresponding
objective function that can be trained using gradient descent.
Gradient descent. The gradient descent algorithm starts with an
initial set of model parameters and iteratively moves towards a set
of parameters that minimize the objective function. This iterative
minimization is achieved by taking steps in the decreasing direc-
tion of the objective function’s derivative or gradient. Hence, for
each iteration, the parameters W (t) are updated as shown below.

W (t+1)=W (t)−µ× ∂(∑i f (W (t), Xi))

∂W (t)
(2)

As Equation (2) shows, W (t+1) is updated in the negative di-
rection of the objective function’s gradient ( ∂ f

∂W (t) ) with learning
rate, µ. In a single iteration of gradient descent, the gradient of
the objective function calculates a sum over the entire training
data to obtain the next set of parameters W (t+1). This process
is repeated until the function is minimized and the final set of
parameters W ( f inal) is obtained. W ( f inal) is the trained model
of the machine learning algorithm for a given training dataset.
For very large training datasets, gradient descent can impose a
high overhead as it calculates a sum over the entire data in a
single iteration. To avoid this computationally large overhead,
stochastic gradient descent is generally used [15, 16, 18].
Stochastic gradient descent. Stochastic gradient descent is a
modification of the conventional gradient descent algorithm. It
divides the objective function into smaller differentiable functions.
As Equation 1 shows, the objective function is a summation of a
function over the entire training data. Instead of taking the deriva-

Table 1: Machine learning algorithms, their objective function, and the gradient of this objective function (used with TABLA). The δ() operator in the
objective and gradient functions represents a complex nonlinear transformation. For example, in logistic regression δ(W,Xi) represents sigmoid(∑iXi×W).

Machine Learning Algorithm Objective Function ( f ) Gradient of the Objective Function (∂ f )
Logistic Regression ∑i { Yi log (δ(W,Xi)) + (1−Yi) log (1−δ(W,Xi)) } + λ ||W || (δ(W,Xi)−Yi)X + λW

Support Vector Machines ∑i { 1−Yi W Xi } + λ ||W || YiXi + λW
Recommender Systems ∑i, j { (Yi j−Wj Xi)

2 } + λ ||W,X|| ∑i (Yi j−WjXi)Xi + λW , ∑ j (Yi j−Wj Xi)Wj + λX
Backpropagation ∑i ∑k { (Y k

i log (δ(W,Xi)
k)) + (1−Y k

i ) log (1−δ(W,Xi)
k) } + λ ||W || ∑k(α

k
i ∆k

i ) + λW
Linear Regression ∑i { 1

2 (WXi−Yi)
2 } + λ ||W || (WXi−Yi)Xi + λW
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tive of the function calculated over the entire dataset, stochastic
gradient descent divides the objective function into smaller func-
tions requiring a single input vector. Therefore, the gradient of the
smaller function is only calculated over a single vector. Thus, the
parameter update rule changes from Equation (2) to Equation (3).

W (t+1)=W (t)−µ× ∂ f (W (t), Xi)

∂W (t)
(3)

The calculation in Equation (3) is repeated individually for all in-
put vectors Xi, until the function converges to its minimum value.
Stochastic gradient descent typically takes more iterations to con-
verge in comparison to conventional gradient descent. However,
the benefits obtained by avoiding data accesses to all the input
vectors for each iteration significantly outweigh the cost incurred
by executing more iterations. Using stochastic gradient descent
to find the minimum of the objective function is imperative for
large training datasets across different domains of machine learn-
ing algorithms. This insight motivated us to choose stochastic
gradient descent as the abstraction between the software and
the hardware for TABLA, as shown in Figure 2. To specialize
the hardware templates, TABLA only requires the programmer
to specify the learning model as the gradient of the objective
function ( ∂ f

∂W (t) ). The only programming task is to implement
this gradient function for the corresponding algorithm. Our ex-
perience shows that the gradient function can be implemented
with less than 50 lines of code for logistic regression, SVM,
recommender systems, back-propagation, and linear regression
(summarized in Table 3). Other algorithms such as conditional
random fields, Kalman filters, portfolio optimization, and least
square models can also be accelerated using TABLA since they
can be optimized using stochastic gradient descent.

After the programmer provides the gradient of the objective
function, TABLA can automatically generate a concrete accelera-
tor for the specific learning task. In the following sections, we de-
scribe TABLA’s components: programming interface (Section 4),
model compiler (Section 5), and template designs (Section 6).

4 Programming Interface
In TABLA, the programmer expresses ML algorithms by specify-
ing the gradient of the objective function. The programmer uses
our high-level programming interface2 to specify this gradient
function. Our programming interface provides the flexibility to
represent a wide range of ML algorithms and possesses the fol-
lowing properties: (1) it is a high-level language that enables the
representation of learning algorithms in a fashion that is familiar
to ML experts and is close to their mathematical formulation
(e.g., Table 1); and (2) it incorporates language constructs that
are commonly seen in a wide class of statistical learning algo-
rithms. The interface comprises two language constructs: data
declarations and mathematical operations. Data declarations, de-
tailed in Section 4.1, allow the programmer to express different
data types that represent the training data and model parameters.
Further, the mathematical operations, described in Section 4.2,
enable the programmer to declare different numerical operations
used to calculate the gradient of an objective function. Table 2
summarizes these language constructs.
2The details of TABLA’s domain specific language, its formal
syntax, grammar, and semantics of each construct is available in
http://act-lab.org/artifacts/tabla.

Table 2: TABLA’s language constructs that enable convenient
representation of a wide class of learning algorithms.

Type Connotation  Keyword

Learning model inputs model_input
Learning model outputs model_output
Learning model parameters model
Gradient of the objective function gradient
Iterator variable iterator

Basic operations +,-,*,/
Group operations pi, sum, norm
Nonlinear transformations gaussian, sigmoid, …, log

Data 
Declarations

Mathematical 
Operations

4.1 Data Declarations
Data declarations enable the programmer to specify different data
types used in the gradient of the objective function. These data
types include: model input, model output, model parameters, gra-
dient, and iterators. The data declarations emphasize the different
semantics held by the data in an ML algorithm. For example,
the model input keyword refers to an input vector (independent
variables) while the model output declaration refers to its corre-
sponding output vector (dependent variables). Both model input
and model output together form the training data. Both these
data types are inputs to the learning algorithm while the algorithm
learns the model. The gradient keyword declares the gradient of
the objective function. Further, the model keyword declares the
model parameters that are updated every iteration in accordance
with the gradient of the objective function. Finally, the iterator
keyword identifies arrays, their dimensions, and their operations.
The following code snippet illustrates the use of iterators.
...
i t e r a t o r i[0:n -1]; // iterator for arrays
Q[i] = A[i] * B[i]; // element -by - element multiplication
s = sum [i](Q[i]); // group summation
...

In this example, i is an iterator variable that ranges from 0 to n-
1 and can iterate over arrays with n elements starting from index
0. For example, Q[i] = A[i] * B[i] statement uses i to perform an
element-by-element multiplication between the two arrays, both
of size n. Moreover, iterators can imply the autonomy of the ar-
ray operations. For instance, the A[i] * B[i] cane parallelized over
all the values of i. Iterators are also used in group operations to
identify the array of operands. In the above example, sum[i](Q[i])
denotes that all the elements of Q need to be summed together.

As discussed, these data declarations enable programmers to
specify the semantics and characteristics of different data ele-
ments in learning algorithms. Another major component of the
learning algorithms is the mathematical operations that are de-
fined over these data elements. Below, we discuss the language
constructs that support these mathematical operations.
4.2 Mathematical Operations
Our language supports three types of mathematical operations:
basic operations, group operations, and nonlinear transforma-
tions.
Basic operations. These operations are basic mathematical op-
erations such as -, +, *, and /.
Group operations. These operations are performed over a group
of elements and include sum (∑), pi (Π), and norm (|| ||). Be-
sides an operand, group operations require an iterator argument.
The iterator specifies the elements on which the calculation is per-
formed. These operations generate an output with dimension one
less than the input operand’s dimensionality. For instance, sum-
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ming the elements of a one-dimensional array generates a scalar.
Nonlinear transformations. These mathematical operations ap-
ply nonlinear functions (e.g., log, sigmoid, gaussian) over their
operands. Since the transformation is applied to each element
individually, the output has the same dimensions as the input.

Using these mathematical operations and data declarations,
programmers can specify a wide range of learning algorithms at a
high level without delving into the details of hardware implemen-
tation. We further demonstrate the capabilities of the language
using a concrete example that implements logistic regression.
4.3 Example: Logistic Regression
As mentioned before, the programmer only needs to specify
the gradient of the objective function for the learning algorithm.
Equation (4) shows this gradient for logistic regression.

Gn×m=
([
∀ j∈ [0,n)

∣∣∣sigmoid(
m−1

∑
i=0

Xi×Wj,i)
]

1×n
−Y ′1×n

)T

n×1
×X1×m

+ lambda×Wn×m (4)

In this equation, G is the gradient matrix with n rows and m
columns; X is an input vector with m elements; Y ′ is the expected
output vector with n elements; W is the matrix with n×m el-
ements that contains the model parameters; and lambda is the
regularization factor, which is a scalar. The following code shows
how this gradient function can be expressed in a few lines using
TABLA’s programming language.
m = 53 // number of input features
n = 3 // number of model outputs
lambda = 0.1 // regularization factor

m o d e l _ i n p u t X[m]; // model input
m o d e l _ o u t p u t Y’[n]; // model output
model W[n][m]; // model parameters
g r a d i e n t G[n][m]; // gradient

i t e r a t o r i[0:m - 1]; // iterator for group operations
i t e r a t o r j[0:n - 1]; // iterator for group operations

//m parallel multiplies followed by
// an adder tree; repeated n times in parallel
S[j] = sum [i](X[i] * W[j][i]);

Y[j] = s i g m o i d (S[j]); //n parallel sigmoid operations
E[j] = Y[j] - Y’[j]; //n parallel subtractions
G[j][i] = X[i] * E[j]; // n*m parallel multiplications
V[j][i] = lambda * W[i][j]; // n*m parallel multiplications
G[j][i] = G[j][i] + V[j][i]; // n*m parallel additions

The above listing shows how a complex mathematical func-
tion is implemented in a textual format using TABLA’s pro-
gramming language. The data declarations (e.g., model input,
model output, model, and gradient) identify the semantics of dif-
ferent data types. The rest of the textual representation has a close
correspondence to the mathematical formulation in Equation (4).
The gradient formula is simply broken down to multiple state-
ments that correspond to the mathematical operations. This cor-
respondence and the simplicity of the statements makes program-
ming with TABLA convenient for machine learning programmers.

In the code, the two iterators i and j correspond to the sub-
scripts in Equation (4) and are used to iterate over the elements
of the input (X) and output (Y) vectors as well as the matrices
that store the model (W) and the gradient (G). The sum statement
represents the ∑

m−1
i=0 Xi×Wj,i part of the gradient. The iterator for

sum is i, similar to the formula in which ∑ iterates over i. This
statement first performs the multiplication Xi×Wj,i and then
accumulates all the multiplication results into a single result S[j]

assuming a constant j. The left hand side of the statement, S[j],
mandates that the accumulation needs to be repeated n times
using the j iterator. Next, the sigmoid statement continues the gra-
dient calculation as shown by

[
∀ j∈ [0,n)

∣∣∣sigmoid(∑m−1
i=0 Xi×Wj,i)

]
1×n

.

The rest of the code similarly performs the remaining part of the
gradient computation. At the end, the G[j][i] variable in the code
corresponds to the elements of the Gn×m matrix in Equation (4).

A wide range of machine learning algorithms can be repre-
sented using TABLA’s programming interface. Furthermore, the
programming interface can be extended to accommodate the
representation of an even wider range of learning algorithms. Al-
though MATLAB and R can also be used to represent the same
learning algorithms, we designed and used TABLA’s own pro-
gramming interface because of: (1) easier representation of gra-
dient functions using the common mathematical constructs used
in machine learning; (2) clear-cut identification of parallelism in
the code; and (3) convenient conversion of gradient function into
the final hardware design using our model compiler, described
in the next section. We are also working on providing translators
that convert MATLAB and R code to TABLA’s language.

5 Model Compiler for TABLA

TABLA’s model compiler statically generates an execution sched-
ule for the accelerator using the gradient of the objective function
provided by the programmer. The model compiler accomplishes
this task in three steps. The first step integrates the gradient of
the objective function with the stochastic gradient descent solver.
In the second step, the compiler generates an intermediate rep-
resentation, i.e., the Dataflow Graph (DFG) of the entire learning
algorithm. Finally, in the last step, the compiler translates this
Dataflow Graph (DFG) into a static schedule for hardware exe-
cution. We specifically use static scheduling since it simplifies
the hardware and improves the efficiency of the accelerated ex-
ecution. Each of these compilation steps are described in further
detail in this section.
5.1 Integrating Stochastic Gradient Descent
After the programmer provides the gradient of the objective func-
tion, TABLA uses the stochastic gradient algorithm to learn the
model parameters from the training data. Learning a model from
the training data requires a solver that finds the minimum value
of the objective function that represents the learning algorithm.
Since stochastic gradient descent is independent of the learning
model, we devise a general template to implement it. TABLA
integrates this template with the programmer-provided gradient
code using the gradient and model variables. These keywords
explicitly identify the inputs to the stochastic gradient descent
solver. The following code snippet shows the template code of
the stochastic gradient descent solver.
g r a d i e n t G[n][m]; // gradient
model W[n][m]; // model parameters

i t e r a t o r i[0:m - 1]; // iterator for group operations
i t e r a t o r j[0:n - 1]; // iterator for group operations

G[j][i] = u * G[j][i] // n*m parallel multiplications
W[j][i] = W[j][i] -G[j][i]; // n*m parallel subtractions

As the code shows, the model parameters (W[n][m]) are up-
dated in the opposite direction of the gradient (G[n][m]) with a
rate u, called the learning rate. Once the gradient function is
integrated with the stochastic gradient descent solver, the model
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compiler generates the DFG of the entire learning algorithm.
5.2 Generating Dataflow Graph
TABLA’s model compiler converts any code written in our pro-
gramming interface into a dataflow graph. Each language con-
struct corresponds to a small and simple DFG. The model com-
piler scans the code and replaces each construct with its corre-
sponding DFG. The compiler then links these small DFGs to
create the final DFG for the learning algorithm.
Dataflow graph of individual operations. Figure 3 shows sam-
ple DFGs of three types of mathematical operations that are
supported by TABLA’s language: basic, group, and nonlinear.
The nodes are basic computations and the edges capture the
dependencies. The group operations require more than one com-
putational node. As Figure 3 depicts, the DFG for sum is an adder
tree and the DFG for norm includes a layer of multiplications that
feed into an adder tree. The DFG also captures the parallelism
amongst the basic computations and enables the model compiler
to generate an efficient execution schedule for the accelerator.
Dataflow graph of the learning algorithm. Figure 4 shows the
complete DFG for logistic regression. This DFG corresponds to
the example code provided in Section 4.3 when n is 1. As the fig-
ure illustrates, the model compiler combines and links the DFG of
each operation to generate the entire DFG. For example, the com-
piler converts the sum[i](X[i]*W[j][i]) statement to a series of mul-
tiplications followed by an adder tree, which is the DFG for sum
(Figure 3). Translating code to DFG is straightforward since the
dataflow graphs of each operation is predetermined. As shown
at the bottom of Figure 4, the DFG of logistic regression also
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Figure 4: Complete dataflow graph of the logistic regression algorithm.

includes the computation of stochastic gradient descent solver.
5.3 Static Scheduling
Once the DFG is generated, the model compiler statically gener-
ates a step-by-step schedule of each operation. We use the Min-
imum Latency–Resource Constrained Scheduling (ML–RCS)
algorithm [17] to generate this schedule3. This algorithm aims to
optimize for minimum execution latency while being constrained
by the limited set of resources available on the accelerator plat-
form. Algorithm 1 presents this scheduling algorithm.
Inputs: R: Set of available resources

O: Set of all the operations to be scheduled
D: Distance to sink for each operation

Output: S: Final schedule
Initialize S← /0
Initialize current_cycle← 0
while (O 6= /0) do

for (r ∈ R) do
if o ∈ O where o.predecessors = DONE & o.distance = max(D) then

schedule.op = o; schedule.resource = r; schedule.cycle = current_cycle
S.append(s)
O.remove(o)

end if
end for
current_cycle = current_cycle + 1

end while
Algorithm 1: Minimum-latency resource constrained scheduling.

To understand the algorithm, we first define a property of each
operation (o) called distance from sink, denoted as “o.distance”
in the Algorithm 1. Distance from sink of o is the number of
dependent operations between o and the final output or the sink
of the DFG. This distance captures the criticality of an opera-
tion. The higher an operation’s distance from sink, higher its
scheduling priority. Algorithm 1 picks an available resource r
and schedules an operation o at the current_cycle on r if the
following two conditions are satisfied: (1) all the predecessors of
o have already been scheduled, i.e., o is ready; and (2) o is on the
critical path of execution, i.e., its distance from sink is the max-
imum among all unscheduled ready operations. The algorithm
picks the next available resource or increments the current_cycle
if all the resources are being utilized. The algorithm terminates
when all the operations are scheduled. To generate this schedule,
TABLA’s design builder first needs to generate the skeleton of the
accelerator and determine the number of available resources. The
next section discusses this process and the template architecture
of the accelerator.

6 Design Builder and Template Designs
6.1 Design Builder
TABLA’s design builder generates synthesizable Verilog code
of the learning accelerator given the DFG and schedule of the
learning algorithm, and the high-level specification of the target
FPGA. The FPGA specification comprises the number of DSP
slices, the ALU operations supported in the DSP slices, the num-
ber of SRAM structures (Block RAMs), the capacity of each
Block RAM, the number of read/write ports on a Block RAM,
and the off-chip communication bandwidth. Given this informa-
3 Note that the DFG itself represents the As-Soon-As-Possible (ASAP)
schedule of the operations. In the ASAP schedule, an operation is
scheduled for computation as soon as it is ready, i.e., all of its prede-
cessors have finished their computation. The ASAP schedule provides
minimum latency; however, it assumes infinite resources. We use ML–
RCS since it considers the limited availability of compute resources.
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Figure 5: The overall structure of the template design for the accel-
erators, which is a scalable, general, modular, and highly customizable
architecture. The design builder shrinks or expands the template
architecture based on the requirements of the DFG and the availability
of resources on the target FPGA. This hierarchical design is clustered
into a set of PUs that comprise of a number of PEs. The PU are con-
nected through an inter-PU bus that is also connected to the memory
interface. The PEs use a dedicated intra-PU bus to communicate.
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Figure 6: (a) Template PU design comprising a set of PEs that are
connected through an intra-PU bus. This bus is also connected to the
global inter-PU bus. (b) Template PE design with ALU, control logic,
data buffer, nonlinear unit, and the links to the neighboring PEs.

tion and the DFG of the learning algorithm, the design builder
customizes our hand-optimized template accelerator architecture
for the specified machine learning algorithm.

As Figure 5 shows, the template design is a clustered hierarchi-
cal architecture. A series of Processing Units (PUs) that include a
set of Processing Engines (PEs) constitute this hierarchical archi-
tecture. This clustered template architecture is scalable, general,
and highly customizable. The design builder shrinks or expands
this template design considering the degree of parallelism in the
DFG and the availability of the resources in the target FPGA. The
design builder first extracts the maximum number of parallel op-
erations from the DFG and select the total number of the PEs ac-
cordingly. Based on the DFG, the design builder also determines
the ALU operations and the nonlinear transformation units that
need to be included in the PEs. If an ALU operation or a nonlinear
function is not used in the DFG, the corresponding hardware unit
is excluded from the final accelerator design. The design builder
also generates the control unit of the PEs, PUs, and the buses ac-
cording to the schedule of operations. The scheduling algorithm
and the design builder work in tandem. The design builder deter-
mines the number of PEs (compute resources) for the scheduler
to generate the execution schedule. Then, based on the schedule,
the design builder generates the control logic. The design builder
also determines the number of PEs per each PU depending on the
target FPGA as we will discuss in Section 7.3. Finally, the design
builder adds the memory interface unit and generates the access
schedule to the memory according to the execution schedule. The
remainder of this section discusses the PU and the PE designs.
6.2 Template Design for Processing Units
As shown in Figure 5, the processing units construct the first level
of hierarchy in our template design. The PUs are self-contained
structures that comprise a set of identical processing engines as
depicted in Figure 6a. Grouping PEs as PUs makes the tem-
plate design modular and localizes the majority of data traffic
within PUs. Both modularity and locality of traffic enhances
the scalability and the customizability of the template design.
This characteristic of the template enables the design builder to

generate a concrete accelerator design with any number of PUs.
Conceptually, a single PU can carry out the computation of an
entire learning algorithm. However, the design builder scales up
the number of PUs if the DFG can utilize the additional resources.
The PUs are connected through a pipelined global bus. The com-
munication between PUs is statically orchestrated by the model
compiler and is loaded into the PUs as part of the accelerator con-
figuration. The PUs are also connected to the memory interface
through a data buffer. The PUs are merely consumers of data and
do not initiate requests. The data buffer fetches data from the ex-
ternal memory and sends the data to the PUs according to a static
schedule generated by the model compiler. The static scheduling
of communication significantly simplifies the PU design and the
busing logic. This hardware-software co-design approach makes
the accelerator template design scalable and enables the design
builder to cater the needs of a variety of learning algorithms.
6.3 Template Design for Processing Engine
Figure 6b depicts the template design of the processing engines.
PEs are the basic blocks of our template design and are cus-
tomized according to the DFG of the learning algorithm. As
illustrated, each PE contains an ALU that performs the calcu-
lations and a local memory (data/model Buffer) that stores the
model parameters and data elements. Some of the components
are fixed within a PE, while the others are customizable based
on the learning algorithm’s DFG.

The fixed components in a PE are the ALU, data/model buffer,
registers, and busing logic. All the learning algorithms have
some form of mathematical operations, making the ALU a fixed
component. Although the ALU is fixed, the operations that it
supports changes according to the learning algorithm’s DFG. Ad-
ditionally, a buffer is necessary to store the model parameters or
any other incoming data. The buffer retains the model parameters
that are updated (learned) during the execution. The PE’s share
of training data is also stored in this buffer. The registers are
essential to a PE as they enable the storage of intermediate results.
Finally, bus interfaces are always needed to channel the incoming
data from memory or other PEs and PUs.

7



Table 3: Benchmarks, their brief description, size of the training datasets, number of input features, model topology, lines of code to express the
gradient function of the learning algorithm with TABLA’s programming interface, and the number of PEs in the TABLA generated accelerators.

Name Model Algorithm Name Description Input Vectors # of Features Model Topology Lines of Code # of PEs

M1 581,000 54 54 20 32
M2 500,000 200 200 20 64
M1 581,000 54 54 23 32
M2 500,000 200 200 23 64
M1 1,700,000 2,700 27,000 31 32
M2 24,000,000 10,000 100,000 31 64
M1 38,000 10 10 -> 9 -> 1 48 64
M2 90,000 256 256 -> 128 -> 256 48 64
M1 10,000 55 55 17 64
M2 10,000 784 784 17 64

Reco 

LogisticR 

SVM

Backprop

LinearR Linear Regression Models relationship between a dependent 
variable and one or more explanatory variables 

Information filtering system that predicts the 
preference a user would give to an item

Classifies data into different categories by 
identifying support vectors 

Logistic Regression  Estimates the probability of dependent variable 
given one or more independent variables

Backpropogation Trains a neural network that models the mapping 
between the inputs and outputs of the data

Recommender Systems

Support Vector Machines

The highly customizable components in the PE are the control
unit, the nonlinear unit, and the neighbor input/output commu-
nication links. Firstly, the control unit stores the PE’s schedule
of operations. This schedule is a queue of predetermined con-
trol signals that directs different components of the PE. This
schedule changes with the DFG of the learning task. Secondly,
the nonlinear unit is not required by some algorithms such as
SVM, recommender system, and linear regression. This unit is
excluded or customized according to the algorithm. Finally, com-
munication between neighboring PEs is only useful for learning
algorithms that aggregate data (e.g., use sum (∑) or pi (Π)). Dur-
ing aggregation, the short direct links between neighboring PEs
enable parallel exchange of data without serializing computation
by requiring PEs to contend for the intra-PU bus. Once the design
builder customizes the PE design in congruence with the DFG
of the learning algorithm, it groups the PEs as PUs and generates
the final concrete accelerator as synthesizable Verilog code.

In the next section, we evaluate TABLA-generated accelerators
for ten different learning tasks.

7 Evaluation
We evaluate TABLA using an off-the-shelf Xilinx Zynq ZC702
FPGA platform, specifications of which are summarized in Ta-
ble 4. We synthesize the TABLA-generated accelerators with
64-bit Vivado v2015.1. The accelerators are connected to the
external memory via four Xilinx Advanced eXtensible Interface
(AXI) controllers and operate at 100 MHz. We compare the
performance and energy benefits of these FPGA accelerators
to a diverse set of high-performance and low-power CPUs and
GPUs. We use hardware measurements to rigorously compare
the accelerator benefits to both multicore CPUs (ARM Cortex
A15 and Xeon E3) and many-core GPUs (Tegra, GTX 650 Ti,
and Tesla K40).
7.1 Experimental Setup
7.1.1 Benchmarks and Training Datasets
Table 3 lists the machine learning algorithms used to evaluate
TABLA. We study five popular machine learning algorithms:
Logistic Regression (LogisticR), Support Vector Machines (SVM),
Recommender Systems (Reco), Backpropagation (BackProp),
and Linear Regression (LinearR). These algorithms represent
a wide range of learning algorithms encompassing regression
analysis, statistical classification, information filtering systems,
recommender systems, and artificial neural networks. Table 3
also includes some of the most pertinent learning parameters
such as the number of training vectors, the model topology, the

number of lines required to implement the gradient function in
the TABLA programming interface, and the number of PEs/PUs
constituting the design of each algorithm. Each algorithm is
evaluated with two model topologies M1 and M2. The evaluation
across multiple models allows us to evaluate the flexibility of the
TABLA framework to accommodate changes in the topology of a
machine learning algorithm. For LogisticR and SVM, we use two
model topologies from the UCI repository[19]. One dataset com-
prises 54 features and the other dataset consists of 200 features.
We modified the datasets to incorporate binary output values. For
Reco, we use two different topologies from movieLens [20, 21],
a movie database. For BackProp we use two topologies: a large
neural network topology (256→128→256) [22] and a small neural
network topology (10→9→1) [23]. For LinearR we use one topol-
ogy from the UCI repository and one from MNIST [24]. The In-
put Vectors column in Table 3 shows the number of input vectors
in each training data set. The # of Features column denotes the
number of independent variables. The Model Topology column
shows the topology and the number of parameters that are trained
via the learning task. Finally, the Lines of Code column lists the
number of lines of code that were required to implement each
learning task’s gradient function using TABLA’s programming
interface. The number of lines vary from 17 for LinearR to 48 for
Backprop depending on the complexity of the gradient function
for a given algorithm . These numbers suggest that TABLA estab-
lishes an effective high level programming interface that abstracts
away the intricate details of hardware design from its users. Fi-
nally, the # of PEs column gives the total number of PEs for each
benchmark in the final accelerator design generated by TABLA.

7.1.2 CPU and GPU Platforms
As shown in Table 5, we compare TABLA-generated accelerators
with two multicore CPU processors: (1) the low-power quad-core
ARM A15 available on the Nvidia Jetson TK1 platform [25] that
operates at 2.3 GHz; and (2) the high performance quad-core Intel
Xeon E3 with hyper-threading support that operates at 3.6 GHz.
We also compare TABLA-generated accelerators to three GPU
processors: (1) the low-power Tegra K1 GPU, which is available
on the Jetson TK1 board with 192 SIMD cores; (2) the desktop-
class GeForce GTX 650 Ti with 768 SIMD cores; and (3) the
high-performance Tesla K40 GPU accelerator with 2880 SIMD
cores. All the platforms run Ubuntu Linux version 14.04.
Multithreaded vectorized CPU execution. To compare TABLA
with the CPU platforms, we use optimized open-source mul-
tithreaded implementations. We use Liblinear [26] for logis-
tic regression and SVM; MLPACK [27] for recommender sys-
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Figure 7: Speedup of TABLA in comparison to a diverse set of CPU and GPU platforms. The baseline is ARM A15.

Table 4: FPGA platform specifications.

Model Xilinx Zynq ZC702 (Artix-7)
Technology TSMC 28nm

53K LUTs
106K Flip-Flops

Peak Frequency 250MHz
BRAM 630 KB

DSP Slices 220 Count of type DSP48E1
MSRP $129

FPGA hardware platform

FPGA Capacity

Table5: Specificationsof theCPU‘sandGPU‘susedtoevaluate TABLA.

ARM Cortex A15 4+1 2300 2 5 28 $191
Intel Xeon E3-1246 v3 4 3600 16 84 22 $290
Tegra K1 GPU 192 852 2 5 28 $191
NVIDIA GTX650Ti 768 928 1 110 28 $150
Tesla K40 2880 875 12 235 28 $5,499

Process
(nm) 

MSRP 
(USD)Platform Cores Clock  

(MHz) 
Memory 

(GB) 
TDP 
(W) 

tems and linear regression; and Caffe [18] for backpropagation.
The code is compiled using gcc 4.8 with -O3 -ftree-vectorize
-march=native flags in order to enable aggressive compiler op-
timizations and utilize vector instructions. All benchmarks use
four threads on ARM and eight threads on Xeon. The ARM CPU
does not support simultaneous multithreading (SMT) while the
Xeon CPU does. Multithreading support is either implemented
using OpenMP (Liblinear) or using OpenBLAS [28] (MLPACK
and Caffe). In addition to libraries reported in this paper, we
tried a wide spectrum of other available libraries (LibFM [29],
Libsvm [30], FANN [31]). However, these libraries provided
inferior performance in comparison to the ones presented.
Optimized CUDA implementation for GPU execution. For
the GPU platforms, we use highly optimized CUDA implemen-
tations from [32], Caffe+cuDNN [18], and LibSVM-GPU [33].
Caffe was configured to use the latest version of Nvidia cuDNN
library [34]. The cuDNN library is a dynamic library provided as
a binary without source code and is pre-optimized by Nvidia for
our target GPUs. For the other benchmarks, we made our best
effort to hand-tune their CUDA code for each GPU platform and
optimized the number of blocks and number of threads-per-block.
Moreover, all of the benchmarks are compiled separately for each
GPU using target-specific flags.
Execution time measurements. The execution time for both
CPU and GPU implementations are obtained by measuring the
wall clock time, averaged over 100 runs. The CPU and GPU exe-
cution times are compared with the FPGA runtime obtained from
the hardware counters synthesized on the programmable logic.

7.1.3 Power Measurements
We employ a variety of strategies in order to measure each bench-
mark’s power consumption on different platforms.
Power measurements using vendor libraries. For Xeon E3,
we utilize the Intel Running Average Power Limit (RAPL) en-
ergy consumption counters available in the Linux kernel. For
Tesla K40, we use the Nvidia Management Library (NVML) to
obtain the average power while running each benchmark. GTX
650 Ti does not support the NVML library; however, GTX 650
Ti and Tesla K40 share the same microarchitecture. Hence, we
make a conservative estimation of the GTX650 Ti power con-
sumption by scaling the Tesla K40 measurements using the ratio
of the two chips’ Thermal Design Powers (TDPs). For each
benchmark, we calculate the ratio between the measured power
in Tesla and its TDP. We multiply this ratio with the GTX 650 Ti’s
TDP, and use 95% of the resulting value as its estimated power.
Power measurements in hardware. ARM Cortex A15 CPU
and Tegra K1 GPU are a part of Jetson TK1’s development
board. Jetson TK1 does not provide a software mechanism to
measure energy consumption. Therefore, we use the Keysight
E3649A Programmable DC Power Supply to measure its power
consumption. During each benchmark execution, we subtract
the idle power from the obtained readings. The ZYNQ platform
uses Texas Instruments UCD9240 power supply controllers that
enable us to measure the power consumption from the power
plane of the board.
7.2 Experimental Results
7.2.1 Performance Comparison
Comparison with CPUs. Figure 7a shows the speedup of TABLA-
generated FPGA accelerators and the Xeon E3 CPU when com-
pared with the ARM A15 CPU. ARM is the baseline in all the
speedup graphs. Henceforth, we refer to the TABLA-generated
accelerators as Tabla. On average, Tabla outperforms ARM by
19.4× and Xeon by 2.9×. Furthermore, the high-performance
Xeon is 6.7× faster than the low-power ARM. Tabla outperforms
both the CPUs since our careful compiler-architecture co-design
alleviates the Von Neumann overhead of instruction fetch, decode,
etc. By leveraging static scheduling for both computation and
memory accesses, the accelerators can carry out the calculations
efficiently. In comparison to ARM, the performance improve-
ments for Tabla range from 4× to 115×. This variation in perfor-
mance benefits comes from the disparity in the model topology,
which in turn leads to different levels of parallelism in the DFG.
For instance, the relatively large model topology of Reco M2 pro-
vides greater opportunities for parallelism that can be exploited by
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(a) Performance-per-Watt of ARM, Xeon and TABLA.
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(b) Performance-per-Watt of Tegra, GTX 650 Ti, Tesla and TABLA
Figure 8: Comparison of Performance-per-Watt between CPUs, GPUs and TABLA.

the accelerator and provides the maximum speedup of 115×. On
the other hand, for the Backprop M2 benchmark, Tabla provides
the least speedup of 4× in comparison to ARM and a slowdown
of 56% in comparison to Xeon. However, Tabla is still faster than
Xeon by 2.5× for Backprop M1 benchmark. In the backpropa-
gation algorithm, there are several dependent operations that lead
to serialization of the computation and limit the opportunities
for parallelism. These dependencies are not as limiting in the
smaller model Backprop M1; however, their effect exacerbates as
the model topology grows (Backprop M2). To overcome this chal-
lenge, one possible solution would be to simultaneously run more
iterations of the gradient function over different training input
vectors. Similar optimizations can be integrated into TABLA’s
framework owing to its cross-layer nature. Ultimately, such op-
timizations would be applied during the compilation stage in
accordance to the DFG of the learning task in order to exploit
more resources that are available on the target FPGA platform.
Comparison with GPUs. Figure 7b depicts the speedups with
different GPU platforms and Tabla. As mentioned before, ARM
is the baseline. As the results show, Tesla provides an average
speedup of 22.8× , followed by GTX 650 Ti with an average
speedup of 16.8× . Finally, the low power Tegra K1 GPU only
provides a speedup of 3.3× over ARM. In comparison to Xeon,
Tesla and GTX 650 Ti provide an average speedup of 3.42×
and 2.51× , respectively. However, Tegra 2.04× is slower than
Xeon. These results can be attributed to the fact that Tesla (TDP
of 235W), GTX 650 Ti (TDP of 110W), and Tegra (TDP of 5W)
are GPUs with decreasing order of TDP (power envelope). The
higher power consumption of Tesla and GTX 650 Ti justify their
higher speedup numbers. On the other hand, even though Tabla
operates in a lower power budget (TDP of 2W), it marginally
outperforms GTX 650 Ti by 16%. However, Tabla is surpassed
by Tesla with a margin of 18%. Tabla is 5.9× faster in comparison
to Tegra. These results show that Tabla either follows or outper-
forms the GPU platforms due to its specialized hardware design

tailored for a particular learning task while operating under a low
power budget of 2W. For benchmarks LogisticR M1, LogisticR
M2, SVM M1, SVM M2, and Backprop M1, Tabla shows higher
performance than Tesla. These benchmarks have relatively small
topologies and hence the coarse-grained parallelism that can be
exploited by the GPUs is fairly limited. On the other hand, the
TABLA-generated accelerators are able to take advantage of the
available fine-grained parallelism. As the size of the topology
increases, GPUs tend to exhibit higher speedups due to the avail-
ability of more computation that can be parallelize. However,
GPUs that outperform Tabla require significantly higher power.

7.2.2 Performance-per-Watt Comparison
The performance benefits vary significantly across the platforms
as these platforms occupy different points in the performance-
power design space. To understand the performance benefits for
fixed energy efficiency, we use the Performance-per-Watt as a
unifying metric to compare these platforms.
Comparison with CPUs. Figure 8a compares the Performance-
per-Watt for ARM A15, Xeon E3 and Tabla. On average,
Tabla achieves 62.7× and 37.4× higher Performance-per-Watt
over ARM and Xeon, respectively. Xeon provides 67% higher
Performance-per-Watt than ARM. Even though ARM is a low
power CPU, Xeon shows better Performance-per-Watt due to its
significantly higher performance.
Comparison with GPUs. Figure 8b illustrates the Performance-
per-Watt for the GPU platforms. Tabla provides 17.57×, 20.2×
and 33.4× higher Performance-per-Watt in comparison to Tegra,
GTX 650 Ti, and Tesla, respectively. In comparison to Tesla,
Xeon achieves just 11% higher Performance-per-Watt, however,
Tesla provides much higher performance gains. Similarly, Tegra,
GTX 650 Ti, and Tesla provide 3.57×, 3.1×, and 1.88× higher
Performance-per-Watt than ARM, respectively, while achieving
higher speedup gains. The TABLA-generated FPGA accelerators
close this performance gap to a large extent and provide much

Table 6: Resource utilization on the FPGA for each benchmark.

Name Model Total Used Utilization Total Used (B) Utilization Total Used Utilization Total Used Utilization
M1 1873 3.52% 440 0.07% 1230 1.16% 32 14.55%
M2 3843 7.22% 1612 0.25% 2446 2.30% 64 29.09%
M1 1326 2.49% 440 0.07% 1206 1.13% 32 14.55%
M2 3296 6.20% 1612 0.25% 2422 2.28% 64 29.09%
M1 1326 2.49% 115504 17.90% 1206 1.13% 32 14.55%
M2 3296 6.20% 439652 68.15% 2422 2.28% 64 29.09%
M1 1916 3.60% 400 0.06% 648 0.61% 16 7.27%
M2 7672 14.42% 262148 40.64% 2602 2.45% 64 29.09%
M1 3296 6.20% 444 0.07% 2422 2.28% 64 29.09%
M2 3296 6.20% 6284 0.97% 2422 2.28% 64 29.09%

Flip-Flops (Total Available: 106400)LUT (Total Available: 53200) DSP Slices (Total Available: 220)Block RAM (Total Available: 630KB)Benchmark
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Figure 9: Speedup change for varying number of PEs in the design with ARM CPU as the baseline
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Figure 10: Speedup with varying Bandwidth for TABLA generated accelerator with ARM as the baseline

higher efficiency and operate with a lower power budget. In
any case, GPUs can be explored as an alternative back-end for
TABLA.

As the results show, TABLA framework provides significant
speedup over the multicore CPUs and higher efficiency over the
many-core GPUs. These results can be attributed to the fact that
TABLA streamlines the execution by generating a static schedule
even for memory accesses. TABLA’s compiler also tries to max-
imize the data transfer bandwidth by marshaling the data. It care-
fully lays out the parameters in local memory and data in external
memory in order to reduce the accesses to the external memory.

7.2.3 Area and FPGA Utilization
Table 6 shows the resource utilization for different components
on the FPGA for each learning task. Backprop M1 utilizes the
least area among all the learning algorithms as it has a relatively
small model and requires only 16 PEs for its default configu-
ration. On the other hand, Reco M1, Reco M2, and Backprop
M2 utilize a larger area in their default configuration. These
learning tasks also occupy more BRAM (FPGA Memory Slices)
to accommodate the large number of parameters that need to be
stored in the accelerator.
7.3 Design Space Exploration
Number of PEs per PU. During the development of the template-
based designs, we perform a design space exploration to find
the PE and PU configuration that provides the highest frequency
while maintaining parallelism within each PU. Empirically, a PU
design with eight PEs strikes a balance between frequency and
intra-PU parallelism. Note that this design space exploration is
not the responsibility of the programmer but part of TABLA.
Number of processing engines. While the number of PEs in
each PU is fixed for the target FPGA, TABLA’s design builder
determines the number PUs (total number of PEs) in accordance
with the algorithm’s DFG. We perform a design space exploration
by varying the total number of PEs. When the number of PEs
exceeds eight, they are grouped into a PU with eight PEs each.
Figure 9 shows the effect of this sweep on the speedup results.

The baseline is the A15 ARM multicore CPU. As expected, the
initial increase in the number of PEs leads to a linear increase in
speedup. However, beyond a certain number of PEs we either
observe diminishing returns or a decrease in speedup. Since the
available parallelism in the algorithms is limited, increasing the
number of PEs beyond a point leads to underutilization of the
added PEs. For instance, for LogisticR M1, a maximum of 54
operations can be performed in parallel. Therefore, providing
more than 54 PEs is inconsequential. In some cases such as
LogisticR M1, increasing the number of PEs beyond 32 leads to a
decrease in the speedup. When the number of PEs is greater than
32, the operational frequency decreases due to the requirement of
a wider global bus. Therefore, in this case (LogisticR M1), adding
more PEs does not improve performance due to the lack paral-
lelism but rather decreases the speedup due to slower hardware.
The last column in Table 3 shows the total number of PEs for
each benchmark that are grouped in PUs with 8 PEs each.
Bandwidth sensitivity. Machine learning algorithms are both
compute and data intensive tasks. We design the accelerators to
exploit the fine-grained parallelism in the computational com-
ponent of the algorithm. In addition to the compute units, the
training data is streamed to the PEs from the external memory
while the PEs store the model parameters locally. The AXI in-
terfaces offer a fixed bandwidth for the training data transfer. We
perform a speedup sensitivity analysis while varying the band-
width between external memory and the accelerator. We perform
the bandwidth sweeps using a cycle-accurate simulator, which is
validated against the hardware. Figure 10 shows the speedup for
each benchmark when the bandwidth varies from 0.25× to 4×
of the default bandwidth. The baseline is ARM. The bandwidth
can be a bottleneck at low values such as 0.25× of the default
bandwidth. As the bandwidth increases, the speedup starts to
increase but we observe diminishing returns after a certain point
since computation dominates the execution time. By providing a
bandwidth that is 4× the default value, the performance only im-
proves by 60%. This limited improvement is in part due to the fact
that the model compiler stores the most frequently accessed data
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(the model parameters and intermediate results) in the PE’s local
buffers. This limits the accesses to the external memory and atten-
uates the effects of external memory bandwidth on performance.

8 Related Work
There have been several proposed architectures that accelerate
machine learning algorithms [23, 32, 35–47]. However, TABLA
fundamentally differs from these works, as it is not an acceler-
ator. TABLA framework generates accelerators for an important
class of machine learning algorithms, which can be expressed as
stochastic optimization problems. TABLA uses the commonal-
ities across a wide range of learning algorithms and provides a
high-level abstraction for programmers to utilize FPGAs as the
accelerator of choice for machine learning algorithms without
exposing the details of hardware design.

TABLA also automatically incorporates stochastic gradient de-
scent solver into its learning accelerators. There have been past
proposals that focus solely on accelerating gradient descent [48]
and conjugate gradient descent [48–51] solvers. The most recent
work [48] focuses merely on designing hardware units for dif-
ferent linear algebra operations that are used in gradient descent
and conjugate gradient solvers. However, these works do not
specialize their architectures for machine learning algorithms or
any specific objective function. Moreover, they neither provide
domain-specific programming models nor generate accelerators.
Machine learning accelerators. There have been several suc-
cessful works that focus on accelerating a single or a range
of fixed learning tasks. Several efforts have focused on de-
signing accelerators for a specific algorithm (K-Nearest Neigh-
bor) [35, 36, 52]. Others propose accelerator designs for k-
Means [37–39], support vector machines (SVM) [40, 41], deep
neural networks [44–46], and multilayer perceptrons [23, 47]
However, all these efforts are focused on accelerating a particular
learning algorithm.

Several inspiring works propose accelerator designs that sup-
port a number of learning algorithms [32, 42, 43]. MAPLE [42,
43] profiles five learning algorithms, identifies their compute-
intensive kernels, and devises an accelerator that efficiently exe-
cutes the kernels. PuDianNao [32] provides an ASIC design that
can accelerate seven different learning algorithms. We, on the
other hand, delve into the theory of machine learning, identify
the theoretical commonalities across a wide range of learning
algorithms, devise an abstraction between hardware and software,
and provide a unified framework that generates accelerators.
FPGA as an acceleration platform. FPGAs have gained pop-
ularity due to their flexibility and capability to provide high ex-
ecution performance by exploiting copious fine-grained irregular
parallelism in the applications. Several works [35, 37, 40, 41, 52–
56] utilize FPGAs to accelerate a diverse set of workloads, val-
idating the efficacy of FPGAs. LINQits [57] provides a template
architecture for accelerating database queries. The work by King
et al. [58] uses Bluespec to automatically generate a hardware-
software interface for the applications partitioned for hardware
acceleration and software execution. The work by Putnam et
al. [7], designs an FPGA fabric for accelerating ranking algo-
rithms in the Bing server. This FPGA-based fabric in deployed
with 1632 servers. TABLA provides an opportunity to utilize
this integrated reconfigurable fabric for machine learning algo-
rithms. Conclusively, TABLA is a comprehensive solution–from

programming language down to circuit design–that provides a
unified abstraction based on the theory of machine learning for
accelerating an important class of learning algorithms.

9 Conclusions
Machine learning algorithms are compute-intensive workloads
that can benefit significantly from acceleration. FPGAs are an
attractive platform for accelerating these important applications.
However, FPGA design still requires relatively long develop-
ment cycles and extensive expertise in hardware design. This
paper described TABLA that aims to bridge the gap between
the machine learning algorithms and the FPGA accelerators.
TABLA dives into the theory of machine learning and takes ad-
vantage of the insight that a large class of learning algorithms
can be expressed as stochastic optimization problems. TABLA
leverages stochastic gradient descent as the abstraction between
hardware and software to automatically generate accelerators for
this class of statistical machine learning algorithms. We used
TABLA to generate accelerators for a variety of learning algo-
rithms targeting an off-the-shelf FPGA platform, Xilinx Zynq.
In comparison to a multicore Intel Xeon with vector execution,
the TABLA-generated accelerators deliver an average speedup of
2.9×. Compared with the high-performance Tesla K40 GPU ac-
celerator, TABLA achieves 33.4× higher Performance-per-Watt.
These gains are achieved while the programmers write less than
50 lines of code. These results suggest that TABLA takes an effec-
tive step towards making FPGAs widely available to the machine
learning developers. We have made TABLA publicly available
(http://act-lab.org/artifacts/tabla) in order to facili-
tate research and development in using FPGAs for learning.
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